感谢支持
我们一直在努力

使用blktrace简单分析IO性能

在Linux系统上,如果I/O发生性能问题,有没有办法进一步定位故障位置呢?iostat等最常用的工具肯定是指望不上的,【容易被误读的iostat】一文中解释过await表示单个I/O所需的平均时间,但它同时包含了I/O Scheduler所消耗的时间和硬件所消耗的时间,所以不能作为硬件性能的指标,至于iostat的svctm更是一个废弃的指标,手册上已经明确说明了的。blktrace在这种场合就能派上用场,因为它能记录I/O所经历的各个步骤,从中可以分析是IO Scheduler慢还是硬件响应慢。

blktrace的原理

一个I/O请求进入block layer之后,可能会经历下面的过程:

  • Remap: 可能被DM(Device Mapper)或MD(Multiple Device, Software RAID) remap到其它设备
  • Split: 可能会因为I/O请求与扇区边界未对齐、或者size太大而被分拆(split)成多个物理I/O
  • Merge: 可能会因为与其它I/O请求的物理位置相邻而合并(merge)成一个I/O
  • 被IO Scheduler依照调度策略发送给driver
  • 被driver提交给硬件,经过HBA、电缆(光纤、网线等)、交换机(SAN或网络)、最后到达存储设备,设备完成IO请求之后再把结果发回。

blktrace能记录I/O所经历的各个步骤,来看一下它记录的数据,包含9个字段,下图标示了其中8个字段的含义,大致的意思是“哪个进程在访问哪个硬盘的哪个扇区,进行什么操作,进行到哪个步骤,时间戳是多少”:

blktrace-event-output

第7个字段在上图中没有标出来,它表示操作类型,具体含义是:”R” for Read, “W” for Write, “D” for block, “B” for Barrier operation。

第6个字段是Event,代表了一个I/O请求所经历的各个阶段,具体含义在blkparse的手册页中有解释,其中最重要的几个阶段如下:

Q – 即将生成IO请求
|
G – IO请求生成
|
I – IO请求进入IO Scheduler队列
|
D – IO请求进入driver
|
C – IO请求执行完毕

根据以上步骤对应的时间戳就可以计算出I/O请求在每个阶段所消耗的时间:

Q2G – 生成IO请求所消耗的时间,包括remap和split的时间;
G2I – IO请求进入IO Scheduler所消耗的时间,包括merge的时间;
I2D – IO请求在IO Scheduler中等待的时间;
D2C – IO请求在driver和硬件上所消耗的时间;
Q2C – 整个IO请求所消耗的时间(Q2I + I2D + D2C = Q2C),相当于iostat的await。

如果I/O性能慢的话,以上指标有助于进一步定位缓慢发生的地方:
D2C可以作为硬件性能的指标;
I2D可以作为IO Scheduler性能的指标。

blktrace的用法

使用blktrace需要挂载debugfs:
$ mount -t debugfs debugfs /sys/kernel/debug

利用blktrace查看实时数据的方法,比如要看的硬盘是sdb:
$ blktrace -d /dev/sdb -o – | blkparse -i –
需要停止的时候,按Ctrl-C。

以上命令也可以用下面的脚本代替:
$ btrace /dev/sdb

利用blktrace把数据记录在文件里,以供事后分析:
$ blktrace -d /dev/sdb
缺省的输出文件名是 sdb.blktrace.<cpu>,每个CPU对应一个文件。
你也可以用-o参数指定自己的输出文件名。

利用blkparse命令分析blktrace记录的数据:
$ blkparse -i sdb

$ blktrace -d /dev/sdb
$ blkparse -i sdb
  # 第一个IO开始:
  8,16  1        1    0.000000000 18166  Q  R 0 + 1 [dd]
  8,16  1        0    0.000009827    0  m  N cfq18166S  /user.slice alloced
  8,16  1        2    0.000010451 18166  G  R 0 + 1 [dd]
  8,16  1        3    0.000011056 18166  P  N [dd]
  8,16  1        4    0.000012255 18166  I  R 0 + 1 [dd]
  8,16  1        0    0.000013477    0  m  N cfq18166S  /user.slice insert_request
  8,16  1        0    0.000014526    0  m  N cfq18166S  /user.slice add_to_rr
  8,16  1        5    0.000016643 18166  U  N [dd] 1
  8,16  1        0    0.000017522    0  m  N cfq workload slice:300
  8,16  1        0    0.000018880    0  m  N cfq18166S  /user.slice set_active wl_class:0 wl_type:2
  8,16  1        0    0.000020594    0  m  N cfq18166S  /user.slice fifo=          (null)
  8,16  1        0    0.000021462    0  m  N cfq18166S  /user.slice dispatch_insert
  8,16  1        0    0.000022898    0  m  N cfq18166S  /user.slice dispatched a request
  8,16  1        0    0.000023786    0  m  N cfq18166S  /user.slice activate rq, drv=1
  8,16  1        6    0.000023977 18166  D  R 0 + 1 [dd]
  8,16  0        1    0.014270153    0  C  R 0 + 1 [0]
  # 第一个IO结束。
  8,16  0        0    0.014278115    0  m  N cfq18166S  /user.slice complete rqnoidle 0
  8,16  0        0    0.014280044    0  m  N cfq18166S  /user.slice set_slice=100
  8,16  0        0    0.014282217    0  m  N cfq18166S  /user.slice arm_idle: 8 group_idle: 0
  8,16  0        0    0.014282728    0  m  N cfq schedule dispatch
  # 第二个IO开始:
  8,16  1        7    0.014298247 18166  Q  R 1 + 1 [dd]
  8,16  1        8    0.014300522 18166  G  R 1 + 1 [dd]
  8,16  1        9    0.014300984 18166  P  N [dd]
  8,16  1      10    0.014301996 18166  I  R 1 + 1 [dd]
  8,16  1        0    0.014303864    0  m  N cfq18166S  /user.slice insert_request
  8,16  1      11    0.014304981 18166  U  N [dd] 1
  8,16  1        0    0.014306368    0  m  N cfq18166S  /user.slice dispatch_insert
  8,16  1        0    0.014307793    0  m  N cfq18166S  /user.slice dispatched a request
  8,16  1        0    0.014308763    0  m  N cfq18166S  /user.slice activate rq, drv=1
  8,16  1      12    0.014308962 18166  D  R 1 + 1 [dd]
  8,16  0        2    0.014518615    0  C  R 1 + 1 [0]
  # 第二个IO结束。
  8,16  0        0    0.014523548    0  m  N cfq18166S  /user.slice complete rqnoidle 0
  8,16  0        0    0.014525334    0  m  N cfq18166S  /user.slice arm_idle: 8 group_idle: 0
  8,16  0        0    0.014525676    0  m  N cfq schedule dispatch
  # 第三个IO开始:
  8,16  1      13    0.014531022 18166  Q  R 2 + 1 [dd]
  …

注:
在以上数据中,有一些记录的event类型是”m”,那是IO Scheduler的调度信息,对研究IO Scheduler问题有意义:

  • cfq18166S – cfq是IO Scheduler的名称,18166是进程号,”S”表示Sync(同步IO),如果异步IO则用“A”表示(Async);
  • 它们的第三列sequence number都是0;
  • 它们表示IO Scheduler内部的关键函数,上例中是cfq,代码参见block/cfq-iosched.c,以下是各关键字所对应的内部函数:
    alloced <<< cfq_find_alloc_queue()
    insert_request <<< cfq_insert_request()
    add_to_rr <<< cfq_add_cfqq_rr()
    cfq workload slice:300 <<< choose_wl_class_and_type()
    set_active wl_class:0 wl_type:2 <<< __cfq_set_active_queue()
    fifo= (null) <<< cfq_check_fifo()
    dispatch_insert <<< cfq_dispatch_insert()
    dispatched a request <<< cfq_dispatch_requests()
    activate rq, drv=1 <<< cfq_activate_request()
    complete rqnoidle 0 <<< cfq_completed_request()
    set_slice=100 <<< cfq_set_prio_slice()
    arm_idle: 8 group_idle: 0 <<< cfq_arm_slice_timer()
    cfq schedule dispatch <<< cfq_schedule_dispatch()

利用btt分析blktrace数据

blkparse只是将blktrace数据转成可以人工阅读的格式,由于数据量通常很大,人工分析并不轻松。btt是对blktrace数据进行自动分析的工具。

btt不能分析实时数据,只能对blktrace保存的数据文件进行分析。使用方法:
把原本按CPU分别保存的文件合并成一个,合并后的文件名为sdb.blktrace.bin:
blkparseisdbdsdb.blktrace.binbttsdb.blktrace.bin  blkparse−isdb−dsdb.blktrace.bin执行btt对sdb.blktrace.bin进行分析: btt -i sdb.blktrace.bin

下面是一个btt实例:


            ALL          MIN          AVG          MAX          N
————— ————- ————- ————- ———–
 
Q2Q              0.000138923  0.000154010  0.014298247      94558
Q2G              0.000001154  0.000001661  0.000017313      94559
G2I              0.000000883  0.000001197  0.000012011      94559
I2D              0.000004722  0.000005761  0.000027286      94559
D2C              0.000118840  0.000129201  0.014246176      94558
Q2C              0.000125953  0.000137820  0.014270153      94558
 
==================== Device Overhead ====================
 
      DEV |      Q2G      G2I      Q2M      I2D      D2C
———- | ——— ——— ——— ——— ———
(  8, 16) |  1.2050%  0.8688%  0.0000%  4.1801%  93.7461%
———- | ——— ——— ——— ——— ———
  Overall |  1.2050%  0.8688%  0.0000%  4.1801%  93.7461%

我们看到93.7461%的时间消耗在D2C,也就是硬件层,这是正常的,我们说过D2C是衡量硬件性能的指标,这里单个IO平均0.129201毫秒,已经是相当快了,单个IO最慢14.246176 毫秒,不算坏。Q2G和G2I都很小,完全正常。I2D稍微有点大,应该是cfq scheduler的调度策略造成的,你可以试试其它scheduler,比如deadline,比较两者的差异,然后选择最适合你应用特点的那个。

本文永久更新链接地址:https://www.linuxidc.com/Linux/2018-10/154673.htm

赞(0) 打赏
转载请注明出处:服务器评测 » 使用blktrace简单分析IO性能
分享到: 更多 (0)

听说打赏我的人,都进福布斯排行榜啦!

支付宝扫一扫打赏

微信扫一扫打赏