可延迟函数和工作队列非常相似,但是他们的区别还是很大的。主要区别在于:可延迟函数运行在中断上下文中,而工作队列中的函数运行在进程上下文中。在中断上下文中不可能发生进程切换。可延迟函数和工作队列中的函数都不能访问进程的用户态地址空间。
涉及数据结构
- /*
- * The per-CPU workqueue (if single thread, we always use the first
- * possible cpu).
- */
- struct cpu_workqueue_struct {
- spinlock_t lock;/*保护该数据结构的自旋锁*/
- struct list_head worklist;/*挂起链表的头结点*/
- /*等待队列,其中的工作者线程因等待跟多
- 的工作而处于睡眠状态*/
- wait_queue_head_t more_work;
- /*等待队列,其中的进程由于等待工作队列
- 被刷新而处于睡眠状态*/
- struct work_struct *current_work;
- struct workqueue_struct *wq;
- struct task_struct *thread;/*指向结构中工作者线程的进程描述符指针*/
- } ____cacheline_aligned;
- /*
- * The externally visible workqueue abstraction is an array of
- * per-CPU workqueues:
- */
- struct workqueue_struct {
- struct cpu_workqueue_struct *cpu_wq;
- struct list_head list;
- const char *name;
- int singlethread;
- int freezeable; /* Freeze threads during suspend */
- int rt;
- #ifdef CONFIG_LOCKDEP
- struct lockdep_map lockdep_map;
- #endif
- };
工作队列操作
创建
最终都会调用如下函数执行
- struct workqueue_struct *__create_workqueue_key(const char *name,
- int singlethread,
- int freezeable,
- int rt,
- struct lock_class_key *key,
- const char *lock_name)
- {
- struct workqueue_struct *wq;
- struct cpu_workqueue_struct *cwq;
- int err = 0, cpu;
- /*分配wq结构*/
- wq = kzalloc(sizeof(*wq), GFP_KERNEL);
- if (!wq)
- return NULL;
- /*分配cwq结构*/
- wq->cpu_wq = alloc_percpu(struct cpu_workqueue_struct);
- if (!wq->cpu_wq) {
- kfree(wq);
- return NULL;
- }
- wq->name = name;
- lockdep_init_map(&wq->lockdep_map, lock_name, key, 0);
- wq->singlethread = singlethread;
- wq->freezeable = freezeable;
- wq->rt = rt;
- INIT_LIST_HEAD(&wq->list);
- if (singlethread) {/*如果设置了单线程,只创建一个*/
- /*初始化cwq*/
- cwq = init_cpu_workqueue(wq, singlethread_cpu);
- /*创建内核线程*/
- err = create_workqueue_thread(cwq, singlethread_cpu);
- /*唤醒刚创建的内核线程*/
- start_workqueue_thread(cwq, -1);
- } else {/*反之,每个cpu创建一个线程*/
- cpu_maps_update_begin();
- /*
- * We must place this wq on list even if the code below fails.
- * cpu_down(cpu) can remove cpu from cpu_populated_map before
- * destroy_workqueue() takes the lock, in that case we leak
- * cwq[cpu]->thread.
- */
- spin_lock(&workqueue_lock);
- list_add(&wq->list, &workqueues);
- spin_unlock(&workqueue_lock);
- /*
- * We must initialize cwqs for each possible cpu even if we
- * are going to call destroy_workqueue() finally. Otherwise
- * cpu_up() can hit the uninitialized cwq once we drop the
- * lock.
- */
- for_each_possible_cpu(cpu) {/*对每个cpu*/
- cwq = init_cpu_workqueue(wq, cpu);
- if (err || !cpu_online(cpu))
- continue;
- err = create_workqueue_thread(cwq, cpu);
- start_workqueue_thread(cwq, cpu);
- }
- cpu_maps_update_done();
- }
- if (err) {
- destroy_workqueue(wq);
- wq = NULL;
- }
- return wq;
- }
可见,工作队列在创建时就唤醒创建的内核线程,下面我们看看他创建的内核线程
- static int worker_thread(void *__cwq)
- {
- struct cpu_workqueue_struct *cwq = __cwq;
- DEFINE_WAIT(wait);
- if (cwq->wq->freezeable)
- set_freezable();
- for (;;) {
- prepare_to_wait(&cwq->more_work, &wait, TASK_INTERRUPTIBLE);
- if (!freezing(current) &&
- !kthread_should_stop() &&
- list_empty(&cwq->worklist))
- schedule();
- finish_wait(&cwq->more_work, &wait);
- try_to_freeze();
- if (kthread_should_stop())
- break;
- /*执行工作队列*/
- run_workqueue(cwq);
- }
- return 0;
- }
- static void run_workqueue(struct cpu_workqueue_struct *cwq)
- {
- spin_lock_irq(&cwq->lock);
- while (!list_empty(&cwq->worklist)) {
- struct work_struct *work = list_entry(cwq->worklist.next,
- struct work_struct, entry);
- work_func_t f = work->func;
- #ifdef CONFIG_LOCKDEP
- /*
- * It is permissible to free the struct work_struct
- * from inside the function that is called from it,
- * this we need to take into account for lockdep too.
- * To avoid bogus “held lock freed” warnings as well
- * as problems when looking into work->lockdep_map,
- * make a copy and use that here.
- */
- struct lockdep_map lockdep_map = work->lockdep_map;
- #endif
- trace_workqueue_execution(cwq->thread, work);
- cwq->current_work = work;
- list_del_init(cwq->worklist.next);
- spin_unlock_irq(&cwq->lock);
- BUG_ON(get_wq_data(work) != cwq);
- work_clear_pending(work);
- lock_map_acquire(&cwq->wq->lockdep_map);
- lock_map_acquire(&lockdep_map);
- f(work);/*执行工作队列中实际的函数*/
- lock_map_release(&lockdep_map);
- lock_map_release(&cwq->wq->lockdep_map);
- if (unlikely(in_atomic() || lockdep_depth(current) > 0)) {
- printk(KERN_ERR “BUG: workqueue leaked lock or atomic: “
- “%s/0x%08x/%d\n”,
- current->comm, preempt_count(),
- task_pid_nr(current));
- printk(KERN_ERR ” last function: “);
- print_symbol(“%s\n”, (unsigned long)f);
- debug_show_held_locks(current);
- dump_stack();
- }
- spin_lock_irq(&cwq->lock);
- cwq->current_work = NULL;
- }
- spin_unlock_irq(&cwq->lock);
- }
可见,创建的内核线程是执行工作队列中的所有函数。
除了最重要的创建函数,内核提供了一系列函数对其操作和方便编程,在这里介绍一个插入队列的函数。
- /**
- * queue_work – queue work on a workqueue
- * @wq: workqueue to use
- * @work: work to queue
- *
- * Returns 0 if @work was already on a queue, non-zero otherwise.
- *
- * We queue the work to the CPU on which it was submitted, but if the CPU dies
- * it can be processed by another CPU.
- */
- int queue_work(struct workqueue_struct *wq, struct work_struct *work)
- {
- int ret;
- ret = queue_work_on(get_cpu(), wq, work);
- put_cpu();
- return ret;
- }
- /**
- * queue_work_on – queue work on specific cpu
- * @cpu: CPU number to execute work on
- * @wq: workqueue to use
- * @work: work to queue
- *
- * Returns 0 if @work was already on a queue, non-zero otherwise.
- *
- * We queue the work to a specific CPU, the caller must ensure it
- * can’t go away.
- */
- int
- queue_work_on(int cpu, struct workqueue_struct *wq, struct work_struct *work)
- {
- int ret = 0;
- if (!test_and_set_bit(WORK_STRUCT_PENDING, work_data_bits(work))) {
- BUG_ON(!list_empty(&work->entry));
- __queue_work(wq_per_cpu(wq, cpu), work);
- ret = 1;
- }
- return ret;
- }
最终调用insert_work函数
- static void insert_work(struct cpu_workqueue_struct *cwq,
- struct work_struct *work, struct list_head *head)
- {
- trace_workqueue_insertion(cwq->thread, work);
- set_wq_data(work, cwq);
- /*
- * Ensure that we get the right work->data if we see the
- * result of list_add() below, see try_to_grab_pending().
- */
- smp_wmb();
- list_add_tail(&work->entry, head);
- wake_up(&cwq->more_work);
- }
可见,在队列插入的时候就实现了唤醒。其他的函数不一一说了,了解了他的实现原理,看懂不难。