安装根文件系统式系统初始化的关键部分。Linux内核允许根文件系统放在很多不同的地方,比如硬盘分区、软盘、通过NFS共享的远程文件系统以及保存在ramdisk中。内核要在变量ROOT_DEV中寻找包含根文件系统的磁盘主设备号。当编译内核时,或者像最初的启动装入程序传递一个合适的“root”选项时,根文件系统可以被指定为/dev目录下的一个设备文件。
相关阅读:
http://www.linuxidc.com/Linux/2012-02/53771.htm
安装根文件系统分为两个阶段:
1,内核安装特殊rootfs文件系统,该文件系统仅提供一个作为初始安装点的空目录
start_kernel()->vfs_caches_init()->mnt_init()->init_rootfs()
[cpp]
- /*初始化根文件系统*/
- int __init init_rootfs(void)
- {
- int err;
- /*初始化ramfs_backing_dev_info*/
- err = bdi_init(&ramfs_backing_dev_info);
- if (err)
- return err;
- /*注册rootfs_fs_type文件类型*/
- err = register_filesystem(&rootfs_fs_type);
- if (err)/*如果出错,销毁上面初始化的*/
- bdi_destroy(&ramfs_backing_dev_info);
-
- return err;
- }
[cpp]
- static struct backing_dev_info ramfs_backing_dev_info = {
- .name = “ramfs”,
- .ra_pages = 0, /* No readahead */
- .capabilities = BDI_CAP_NO_ACCT_AND_WRITEBACK |
- BDI_CAP_MAP_DIRECT | BDI_CAP_MAP_COPY |
- BDI_CAP_READ_MAP | BDI_CAP_WRITE_MAP | BDI_CAP_EXEC_MAP,
- };
[cpp]
- /**
- * register_filesystem – register a new filesystem
- * @fs: the file system structure
- *
- * Adds the file system passed to the list of file systems the kernel
- * is aware of for mount and other syscalls. Returns 0 on success,
- * or a negative errno code on an error.
- *
- * The &struct file_system_type that is passed is linked into the kernel
- * structures and must not be freed until the file system has been
- * unregistered.
- */
- /*注册一个新的文件系统*/
- int register_filesystem(struct file_system_type * fs)
- {
- int res = 0;
- struct file_system_type ** p;
-
- BUG_ON(strchr(fs->name, ‘.’));
- if (fs->next)
- return -EBUSY;
- INIT_LIST_HEAD(&fs->fs_supers);
- write_lock(&file_systems_lock);
- /*从system_type链表中查找指定名称的file_system_type*/
- p = find_filesystem(fs->name, strlen(fs->name));
- if (*p)
- res = -EBUSY;
- else
- *p = fs;
- write_unlock(&file_systems_lock);
- return res;
- }
根文件系统定义如下
[cpp]
- static struct file_system_type rootfs_fs_type = {
- .name = “rootfs”,
- .get_sb = rootfs_get_sb,
- .kill_sb = kill_litter_super,
- };
下面看看他的两个函数
[cpp]
- /*获得根目录的sb*/
- static int rootfs_get_sb(struct file_system_type *fs_type,
- int flags, const char *dev_name, void *data, struct vfsmount *mnt)
- {
- return get_sb_nodev(fs_type, flags|MS_NOUSER, data, ramfs_fill_super,
- mnt);
- }
[cpp]
- int get_sb_nodev(struct file_system_type *fs_type,
- int flags, void *data,
- int (*fill_super)(struct super_block *, void *, int),
- struct vfsmount *mnt)
- {
- int error;
- /*获得sb结构*/
- struct super_block *s = sget(fs_type, NULL, set_anon_super, NULL);
-
- if (IS_ERR(s))
- return PTR_ERR(s);
-
- s->s_flags = flags;
- /*这里实际调用ramfs_fill_super,对sb结构的属性进行设置*/
- error = fill_super(s, data, flags & MS_SILENT ? 1 : 0);
- if (error) {
- deactivate_locked_super(s);
- return error;
- }
- s->s_flags |= MS_ACTIVE;
- simple_set_mnt(mnt, s);/*设置mnt和sb关联*/
- return 0;
- }
[cpp]
- /**
- * sget – find or create a superblock
- * @type: filesystem type superblock should belong to
- * @test: comparison callback
- * @set: setup callback
- * @data: argument to each of them
- */
- /*查找或创建一个sb结构*/
- struct super_block *sget(struct file_system_type *type,
- int (*test)(struct super_block *,void *),
- int (*set)(struct super_block *,void *),
- void *data)
- {
- struct super_block *s = NULL;
- struct super_block *old;
- int err;
-
- retry:
- spin_lock(&sb_lock);
- if (test) {
- list_for_each_entry(old, &type->fs_supers, s_instances) {
- if (!test(old, data))
- continue;
- if (!grab_super(old))
- goto retry;
- if (s) {
- up_write(&s->s_umount);
- destroy_super(s);
- }
- return old;
- }
- }
- if (!s) {/*如果找不到sb,从内存中申请一个*/
- spin_unlock(&sb_lock);
- s = alloc_super(type);
- if (!s)
- return ERR_PTR(-ENOMEM);
- goto retry;
- }
-
- err = set(s, data);
- if (err) {
- spin_unlock(&sb_lock);
- up_write(&s->s_umount);
- destroy_super(s);
- return ERR_PTR(err);
- }
- /*初始化得到的sb结构*/
- s->s_type = type;
- strlcpy(s->s_id, type->name, sizeof(s->s_id));
- /*加入链表尾*/
- list_add_tail(&s->s_list, &super_blocks);
- list_add(&s->s_instances, &type->fs_supers);
- spin_unlock(&sb_lock);
- get_filesystem(type);
- return s;
- }
[cpp]
- /*所有超级块对象都以双向循环链表的形式链接在一起,量表中第一个
- 元素用super_blocks变量表示,而超级块对象的s_list字段存放指向链表
- 相邻元素的指针*/
- LIST_HEAD(super_blocks);
[cpp]
- /**
- * alloc_super – create new superblock
- * @type: filesystem type superblock should belong to
- *
- * Allocates and initializes a new &struct super_block. alloc_super()
- * returns a pointer new superblock or %NULL if allocation had failed.
- */
- static struct super_block *alloc_super(struct file_system_type *type)
- {
- /*从内存中申请sb*/
- struct super_block *s = kzalloc(sizeof(struct super_block), GFP_USER);
- static const struct super_operations default_op;
- if (s) {
- if (security_sb_alloc(s)) {
- kfree(s);
- s = NULL;
- goto out;
- }
- /*初始化*/
- INIT_LIST_HEAD(&s->s_files);
- INIT_LIST_HEAD(&s->s_instances);
- INIT_HLIST_HEAD(&s->s_anon);
- INIT_LIST_HEAD(&s->s_inodes);
- INIT_LIST_HEAD(&s->s_dentry_lru);
- init_rwsem(&s->s_umount);
- mutex_init(&s->s_lock);
- lockdep_set_class(&s->s_umount, &type->s_umount_key);
- /*
- * The locking rules for s_lock are up to the
- * filesystem. For example ext3fs has different
- * lock ordering than usbfs:
- */
- lockdep_set_class(&s->s_lock, &type->s_lock_key);
- /*
- * sget() can have s_umount recursion.
- *
- * When it cannot find a suitable sb, it allocates a new
- * one (this one), and tries again to find a suitable old
- * one.
- *
- * In case that succeeds, it will acquire the s_umount
- * lock of the old one. Since these are clearly distrinct
- * locks, and this object isn’t exposed yet, there’s no
- * risk of deadlocks.
- *
- * Annotate this by putting this lock in a different
- * subclass.
- */
- down_write_nested(&s->s_umount, SINGLE_DEPTH_NESTING);
- s->s_count = S_BIAS;
- atomic_set(&s->s_active, 1);
- mutex_init(&s->s_vfs_rename_mutex);
- mutex_init(&s->s_dquot.dqio_mutex);
- mutex_init(&s->s_dquot.dqonoff_mutex);
- init_rwsem(&s->s_dquot.dqptr_sem);
- init_waitqueue_head(&s->s_wait_unfrozen);
- s->s_maxbytes = MAX_NON_LFS;
- s->dq_op = sb_dquot_ops;
- s->s_qcop = sb_quotactl_ops;
- s->s_op = &default_op;
- s->s_time_gran = 1000000000;
- }
- out:
- return s;
- }
kill_litter_super的过程相反,这里不再写了。
构造根目录是由init_mount_tree()函数实现的,该函数在前面已经介绍过了。
2,安装实际根文件系统
关于__setup宏
__setup宏来注册关键字及相关联的处理函数,__setup宏在include/linux/init.h中定义,其原型如下:
__setup(string, _handler);
其中:string是关键字,_handler是关联处理函数。__setup只是告诉内核在启动时输入串中含有string时,内核要去
执行_handler。String必须以“=”符结束以使parse_args更方便解析。紧随“=”后的任何文本都会作为输入传给
_handler。下面的例子来自于init/do_mounts.c,其中root_dev_setup作为处理程序被注册给“root=”关键字:
__setup(“root=”, root_dev_setup);
比如我们在启动向参数终有
noinitrd root=/dev/mtdblock2 console=/linuxrc
setup_arch解释时会发现root=/dev/mtdblock2,然后它就会调用root_dev_setup
[cpp]
- static int __init root_dev_setup(char *line)
- {
- strlcpy(saved_root_name, line, sizeof(saved_root_name));
- return 1;
- }
- __setup(“root=”, root_dev_setup);
Start_kernel->rest_init->init-> prepare_namespace->
[cpp]
- /*
- * Prepare the namespace – decide what/where to mount, load ramdisks, etc.
- */
- void __init prepare_namespace(void)
- {
- int is_floppy;
- if (root_delay) {
- printk(KERN_INFO “Waiting %dsec before mounting root device…\n”,
- root_delay);
- ssleep(root_delay);
- }
- /*
- * wait for the known devices to complete their probing
- *
- * Note: this is a potential source of long boot delays.
- * For example, it is not atypical to wait 5 seconds here
- * for the touchpad of a laptop to initialize.
- */
- wait_for_device_probe();
- /*创建/dev/ram0,必须得,因为initrd要放到/dev/ram0里*/
- md_run_setup();
- if (saved_root_name[0]) {/*saved_root_name为从启动参数”root”中获取的设备文件名*/
- root_device_name = saved_root_name;
- if (!strncmp(root_device_name, “mtd”, 3) ||
- !strncmp(root_device_name, “ubi”, 3)) {/*如果设备名开头为这两个*/
- mount_block_root(root_device_name, root_mountflags);
- goto out;
- }
- /*主设备号和次设备号*/
- ROOT_DEV = name_to_dev_t(root_device_name);
- if (strncmp(root_device_name, “/dev/”, 5) == 0)
- root_device_name += 5;/*滤掉’/dev/’字符*/
- }
- if (initrd_load())
- goto out;
- /* wait for any asynchronous scanning to complete */
- if ((ROOT_DEV == 0) && root_wait) {
- printk(KERN_INFO “Waiting for root device %s…\n”,
- saved_root_name);
- while (driver_probe_done() != 0 ||
- (ROOT_DEV = name_to_dev_t(saved_root_name)) == 0)
- msleep(100);
- async_synchronize_full();
- }
- is_floppy = MAJOR(ROOT_DEV) == FLOPPY_MAJOR;
- if (is_floppy && rd_doload && rd_load_disk(0))
- ROOT_DEV = Root_RAM0;
- /*实际操作*/
- mount_root();
- out:
- devtmpfs_mount(“dev”);/*devfs从虚拟的根文件系统的/dev umount*/
- sys_mount(“.”, “/”, NULL, MS_MOVE, NULL);/*将挂载点从当前目录【/root】(在mount_root函数中设置的)移到根目录*/
- /*当前目录即【/root】(真正文件系统挂载的目录)做为系统根目录*/
- sys_chroot(“.”);
- }
mount_root操作
[cpp]
- void __init mount_root(void)
- {
- #ifdef CONFIG_ROOT_NFS
- if (MAJOR(ROOT_DEV) == UNNAMED_MAJOR) {
- if (mount_nfs_root())
- return;
- printk(KERN_ERR “VFS: Unable to mount root fs via NFS, trying floppy.\n”);
- ROOT_DEV = Root_FD0;
- }
- #endif
- #ifdef CONFIG_BLK_DEV_FD
- if (MAJOR(ROOT_DEV) == FLOPPY_MAJOR) {
- /* rd_doload is 2 for a dual initrd/ramload setup */
- if (rd_doload==2) {
- if (rd_load_disk(1)) {
- ROOT_DEV = Root_RAM1;
- root_device_name = NULL;
- }
- } else
- change_floppy(“root floppy”);
- }
- #endif
- #ifdef CONFIG_BLOCK/*这里是一般流程*/
- create_dev(“/dev/root”, ROOT_DEV);/*用系统调用创建”/dev/root”*/
- mount_block_root(“/dev/root”, root_mountflags);
- #endif
- }
[cpp]
- void __init mount_block_root(char *name, int flags)
- {
- /*从cache中分配空间*/
- char *fs_names = __getname_gfp(GFP_KERNEL
- | __GFP_NOTRACK_FALSE_POSITIVE);
- char *p;
- #ifdef CONFIG_BLOCK
- char b[BDEVNAME_SIZE];
- #else
- const char *b = name;
- #endif
- /*获得文件系统类型,如果在bootoption里有,
- 则就为这个文件系统类型,如果没有指定,
- 则返回ilesytem链上所有类型,下面再对每个进行尝试.*/
- get_fs_names(fs_names);
- retry:
- for (p = fs_names; *p; p += strlen(p)+1) {
- /*实际的安装工作,这里调用了mount系统调用
- 将文件系统挂到/root目录,p为文件系统类型,由get_fs_names得到
- */
- int err = do_mount_root(name, p, flags, root_mount_data);
- switch (err) {
- case 0:
- goto out;
- case -EACCES:
- flags |= MS_RDONLY;
- goto retry;
- case -EINVAL:
- continue;
- }
- /*
- * Allow the user to distinguish between failed sys_open
- * and bad superblock on root device.
- * and give them a list of the available devices
- */
- #ifdef CONFIG_BLOCK
- __bdevname(ROOT_DEV, b);
- #endif
- printk(“VFS: Cannot open root device \”%s\” or %s\n”,
- root_device_name, b);
- printk(“Please append a correct \”root=\” boot option; here are the available partitions:\n”);
- printk_all_partitions();
- #ifdef CONFIG_DEBUG_BLOCK_EXT_DEVT
- printk(“DEBUG_BLOCK_EXT_DEVT is enabled, you need to specify “
- “explicit textual name for \”root=\” boot option.\n”);
- #endif
- panic(“VFS: Unable to mount root fs on %s”, b);
- }
- printk(“List of all partitions:\n”);
- printk_all_partitions();
- printk(“No filesystem could mount root, tried: “);
- for (p = fs_names; *p; p += strlen(p)+1)
- printk(” %s”, p);
- printk(“\n”);
- #ifdef CONFIG_BLOCK
- __bdevname(ROOT_DEV, b);
- #endif
- panic(“VFS: Unable to mount root fs on %s”, b);
- out:
- putname(fs_names);
- }
[cpp]
- static int __init do_mount_root(char *name, char *fs, int flags, void *data)
- {
- /*mount系统调用来做实际的安装文件系统工作*/
- int err = sys_mount(name, “/root”, fs, flags, data);
- if (err)
- return err;
- /*改变当前路径到根目录*/
- sys_chdir(“/root”);
- ROOT_DEV = current->fs->pwd.mnt->mnt_sb->s_dev;
- printk(“VFS: Mounted root (%s filesystem)%s on device %u:%u.\n”,
- current->fs->pwd.mnt->mnt_sb->s_type->name,
- current->fs->pwd.mnt->mnt_sb->s_flags & MS_RDONLY ?
- ” readonly” : “”, MAJOR(ROOT_DEV), MINOR(ROOT_DEV));
- return 0;
- }
到此,根文件系统的安装过程算是完成了,中间关于mount等系统调用将在后面分析。可以看出总的步骤主要有:
1,创建一个rootfs,这个是虚拟的rootfs,是内存文件系统(和ramfs),后面还会指向具体的根文件系统;
2,从系统启动参数中获取设备文件名以及设备号;
3,调用系统调用创建符号链接,并调用mount系统调用进程实际的安装操作;
4,改变进程当前目录;
5,移动rootfs文件系统根目录上得已经安装文件系统的安装点;
rootfs特殊文件系统没有被卸载,他只是隐藏在基于磁盘的根文件系统下了。