随着深度学习快速发展的浪潮,许多有兴趣的工作者都转入了这个有着很好前景的研究中。工欲善其事,必先利其器。Caffe是一个很不错的深度学习框架,但它的安装步骤比较繁琐,将许多新手拒之门外,于是我就写了这篇博客,主要是我之前安装Caffe也是费了很多时间,由零基础慢慢学习,很羡慕那些有师兄师姐可以帮助的人。
下面开始正式介绍相关安装步骤,该教程主要包括以下几方面的内容:
第一部分:安装所需要的包
第二部分:NVIDIA 驱动和CUDA 安装
第三部分:Caffe安装和测试
第一部分:安装所需要的包
第一部分:安装所需要的包
- sudo apt-get install build-essential # basic requirement
- sudo apt-get install libprotobuf-dev libleveldb-dev libsnappy-dev libopencv-dev libboost-all-dev libhdf5-serial-dev libgflags-dev libgoogle-glog-dev liblmdb-dev protobuf-compiler #required by caffe
sudo apt-get install build-essential # basic requirement sudo apt-get install libprotobuf-dev libleveldb-dev libsnappy-dev libopencv-dev libboost-all-dev libhdf5-serial-dev libgflags-dev libgoogle-glog-dev liblmdb-dev protobuf-compiler #required by caffe
提示:使用 sudo apt-get install libboost-all-dev ,默认安装boost1.54版本,如果想要使用1.55版本,可以使用命令:sudo apt-get install libboost1.55-all-dev(推荐)
Ubuntu 14.04 安装配置CUDA http://www.linuxidc.com/Linux/2014-10/107501.htm
Ubuntu 12.04配置NVIDIA CUDA5.5实录 http://www.linuxidc.com/Linux/2014-10/107502.htm
Ubuntu安装Theano+CUDA http://www.linuxidc.com/Linux/2014-10/107503.htm
关于Ubuntu 12.04 下 CUDA5.5 的安装请参看如下链接 Ubuntu 12.04 安装 CUDA-5.5
Ubuntu 16.04 LTS+NVIDIA@GT620M+CUDA6.5环境搭建总结 http://www.linuxidc.com/Linux/2016-10/135911.htm
第二部分:NVIDIA 驱动和CUDA 安装
重要提示:安装完Ubuntu系统以及CUDA之后,切莫进行系统更新,会引起不能正常进入桌面的情况,会令你很烦恼的。
安装之前请进行md5检验,确保安装包完整,检验命令为:md5sum 文件名,查看输出的md5sum是否跟你有的相同。
以cuda-repo-ubuntu1404-7-0-local_7.0-28_amd64.deb为例
目前CUDA官网已经提供离线*.deb安装的方法,本教程提供两种安装方法(*.deb和*.run)
(一)离线 *.deb 安装方法(推荐)
此方法不用切换到文本模型即可安装。
(2.1.1)首先下载 对应系统的 离线CUDA安装包 (*.deb) 链接:https://developer.nvidia.com/cuda-toolkit
(2.1.2)安装下载到的 CUDA离线包 (cuda-repo-ubuntu1404-7-0-local_7.0-28_amd64.deb)
- 添加软件源
- sudo dpkg -i cuda-repo-<distro>_<version>_<architecture>.deb
- 更新软件源
- sudo apt-get update
- 安装CUDA
- sudo apt-get install cuda
- 重启计算机(通过boot设置独立显卡支持)
- sudo reboot
添加软件源 sudo dpkg -i cuda-repo-<distro>_<version>_<architecture>.deb 更新软件源 sudo apt-get update 安装CUDA sudo apt-get install cuda 重启计算机(通过boot设置独立显卡支持) sudo reboot
(2.1.3)修改环境变量
1)在 /etc/profile 文件中添加以下内容:
- export PATH=/usr/local/cuda-7.0/bin:$PATH
export PATH=/usr/local/cuda-7.0/bin:$PATH
命令:
- sudo vim /etc/profile
2)使环境变量生效
命令:
- source /etc/profile
source /etc/profile
(2.1.4)添加lib库路径
1)在 /etc/ld.so.conf.d/ 文件夹下添加 cuda.conf 文件,内容如下:
- /usr/local/cuda-7.0/lib64
/usr/local/cuda-7.0/lib64
2)使库路径立即生效
- sudo ldconfig [-v,可选]
sudo ldconfig [-v,可选]
(2.1.5)安装CUDA Samples
命令:
- sudo sh cuda-samples-linux-6.5.14-18745345.run
sudo sh cuda-samples-linux-6.5.14-18745345.run
一直aceept就行,建议使用默认路径。
编译CUDA Samples
命令:
- cd /usr/local/cuda-6.5/samples
- sudo make
cd /usr/local/cuda-6.5/samples sudo make
编译完成后,进入路径:/samples/bin/x86_64/linux/release
运行命令:
- ./deviceQuery
./deviceQuery
输出:
- ./deviceQuery Starting…
- CUDA Device Query (Runtime API) version (CUDART static linking)
- Detected 1 CUDA Capable device(s)
- Device 0: “Tesla K40c”
- CUDA Driver Version / Runtime Version 6.5 / 6.5
- CUDA Capability Major/Minor version number: 3.5
- Total amount of global memory: 11520 MBytes (12079136768 bytes)
- (15) Multiprocessors, (192) CUDA Cores/MP: 2880 CUDA Cores
- GPU Clock rate: 745 MHz (0.75 GHz)
- Memory Clock rate: 3004 Mhz
- Memory Bus Width: 384-bit
- L2 Cache Size: 1572864 bytes
- Maximum Texture Dimension Size (x,y,z) 1D=(65536), 2D=(65536, 65536), 3D=(4096, 4096, 4096)
- Maximum Layered 1D Texture Size, (num) layers 1D=(16384), 2048 layers
- Maximum Layered 2D Texture Size, (num) layers 2D=(16384, 16384), 2048 layers
- Total amount of constant memory: 65536 bytes
- Total amount of shared memory per block: 49152 bytes
- Total number of registers available per block: 65536
- Warp size: 32
- Maximum number of threads per multiprocessor: 2048
- Maximum number of threads per block: 1024
- Max dimension size of a thread block (x,y,z): (1024, 1024, 64)
- Max dimension size of a grid size (x,y,z): (2147483647, 65535, 65535)
- Maximum memory pitch: 2147483647 bytes
- Texture alignment: 512 bytes
- Concurrent copy and kernel execution: Yes with 2 copy engine(s)
- Run time limit on kernels: No
- Integrated GPU sharing Host Memory: No
- Support host page-locked memory mapping: Yes
- Alignment requirement for Surfaces: Yes
- Device has ECC support: Enabled
- Device supports Unified Addressing (UVA): Yes
- Device PCI Bus ID / PCI location ID: 1 / 0
- Compute Mode:
- < Default (multiple host threads can use ::cudaSetDevice() with device simultaneously) >
- deviceQuery, CUDA Driver = CUDART, CUDA Driver Version = 6.5, CUDA Runtime Version = 6.5, NumDevs = 1, Device0 = Tesla K40c
- Result = PASS
./deviceQuery Starting... CUDA Device Query (Runtime API) version (CUDART static linking) Detected 1 CUDA Capable device(s) Device 0: "Tesla K40c" CUDA Driver Version / Runtime Version 6.5 / 6.5 CUDA Capability Major/Minor version number: 3.5 Total amount of global memory: 11520 MBytes (12079136768 bytes) (15) Multiprocessors, (192) CUDA Cores/MP: 2880 CUDA Cores GPU Clock rate: 745 MHz (0.75 GHz) Memory Clock rate: 3004 Mhz Memory Bus Width: 384-bit L2 Cache Size: 1572864 bytes Maximum Texture Dimension Size (x,y,z) 1D=(65536), 2D=(65536, 65536), 3D=(4096, 4096, 4096) Maximum Layered 1D Texture Size, (num) layers 1D=(16384), 2048 layers Maximum Layered 2D Texture Size, (num) layers 2D=(16384, 16384), 2048 layers Total amount of constant memory: 65536 bytes Total amount of shared memory per block: 49152 bytes Total number of registers available per block: 65536 Warp size: 32 Maximum number of threads per multiprocessor: 2048 Maximum number of threads per block: 1024 Max dimension size of a thread block (x,y,z): (1024, 1024, 64) Max dimension size of a grid size (x,y,z): (2147483647, 65535, 65535) Maximum memory pitch: 2147483647 bytes Texture alignment: 512 bytes Concurrent copy and kernel execution: Yes with 2 copy engine(s) Run time limit on kernels: No Integrated GPU sharing Host Memory: No Support host page-locked memory mapping: Yes Alignment requirement for Surfaces: Yes Device has ECC support: Enabled Device supports Unified Addressing (UVA): Yes Device PCI Bus ID / PCI location ID: 1 / 0 Compute Mode: < Default (multiple host threads can use ::cudaSetDevice() with device simultaneously) > deviceQuery, CUDA Driver = CUDART, CUDA Driver Version = 6.5, CUDA Runtime Version = 6.5, NumDevs = 1, Device0 = Tesla K40c Result = PASS
如果输出上述信息,恭喜你,NVIDIA和CUDA安装成功,则可以继续进行下一步安装Caffe环境。
(2.1.6)验证NVIDIA 驱动和CUDA是否安装成功
查看安装NVIDIA驱动版本 命令:
- cat /proc/driver/nvidia/version
输出
- NVRM version: NVIDIA UNIX x86_64 Kernel Module 340.96 Sun Nov 8 22:33:28 PST 2015
- GCC version: gcc version 4.7.3 (Ubuntu/Linaro 4.7.3-12ubuntu1)
NVRM version: NVIDIA UNIX x86_64 Kernel Module 340.96 Sun Nov 8 22:33:28 PST 2015 GCC version: gcc version 4.7.3 (Ubuntu/Linaro 4.7.3-12ubuntu1)
从输出信息可以看出NVIDIA驱动版本为 340.96
安装完成后,就可以重新启动桌面服务了。
命令:
- sudo start lightdm
(二)离线 *.run 安装方法
使用该方法安装,可能需要尝试多次安装
(2.2.1)验证显卡是否支持CUDA
命令:
- lspci | grep -i nvidia
lspci | grep -i nvidia
查看该计算机显卡是否存在于 链接 https://developer.nvidia.com/cuda-gpus 中。
(2.2.2)验证系统,确定为x86架构,64bit系统
命令:
- uname -m && cat /etc/*release
uname -m && cat /etc/*release
输出:
- x86_64
- DISTRIB_ID=Ubuntu
- DISTRIB_RELEASE=14.04
- DISTRIB_CODENAME=trusty
- DISTRIB_DESCRIPTION=“Ubuntu 14.04.2 LTS”
- NAME=“Ubuntu”
- VERSION=“14.04.2 LTS, Trusty Tahr”
- ID=ubuntu
- ID_LIKE=debian
- PRETTY_NAME=“Ubuntu 14.04.2 LTS”
- VERSION_ID=“14.04”
- HOME_URL=“http://www.ubuntu.com/”
- SUPPORT_URL=“http://help.ubuntu.com/”
- BUG_REPORT_URL=“http://bugs.launchpad.net/ubuntu/”
x86_64 DISTRIB_ID=Ubuntu DISTRIB_RELEASE=14.04 DISTRIB_CODENAME=trusty DISTRIB_DESCRIPTION="Ubuntu 14.04.2 LTS" NAME="Ubuntu" VERSION="14.04.2 LTS, Trusty Tahr" ID=ubuntu ID_LIKE=debian PRETTY_NAME="Ubuntu 14.04.2 LTS" VERSION_ID="14.04" HOME_URL="http://www.ubuntu.com/" SUPPORT_URL="http://help.ubuntu.com/" BUG_REPORT_URL="http://bugs.launchpad.net/ubuntu/"
(2.2.3)验证系统中是否已经安装gcc,因为需要用gcc来编译CUDA和Caffe
命令:
- gcc –version
gcc --version
(2.2.4)NVIDIA和CUDA安装(*.run)
安装之前请进行md5sum检验,确保安装包完整,检验命令为:md5sum 文件名,查看输出的md5sum是否跟你有的相同。
该方法以 CUDA6.5 为例。
(2.2.4.1)首先下载 对应系统的 离线CUDA安装包 (*.run) 链接:https://developer.nvidia.com/cuda-toolkit
(2.2.4.2)关闭桌面服务
进入Ubuntu, 按 Ctrl+Alt+F1 进入tty, 登录tty后输入如下命令:sudo service lightdm stop。
此命令会关闭lightdm服务,如果你使用的是gdm或者其他的桌面服务,请在安装NVIDIA显卡驱动前关闭它。
(2.2.4.3)关闭 Nouveau 开源驱动服务
Nouveau是一个开源的显卡驱动,Ubuntu 14.04 默认安装了,但是它会影响nVidia驱动的安装,启动时需要将这个驱动加入黑名单中。
1):修改nvidia-graphics-drivers.conf文件
- sudo vim /etc/modprobe.d/nvidia-graphics-drivers.conf
sudo vim /etc/modprobe.d/nvidia-graphics-drivers.conf
写入:
- blacklist nouveau
blacklist nouveau
保存并退出:
- wq!
wq!
检查:
- cat nvidia-graphics-drivers.conf
cat nvidia-graphics-drivers.conf
2):修改grub文件
- sudo vim /etc/default/grub
末尾写入:
- rdblacklist=nouveau nouveau.modeset=0
rdblacklist=nouveau nouveau.modeset=0
保存并退出:
- wq!
wq!
检查:
- cat /etc/default/grub
cat /etc/default/grub
(2.2.4.4)安装下载到的 CUDA离线包 (*.run)
1):安装 *.run文件,可以直接使用命令 sudo sh cuda_6.5.14_linux_64.run 一直aceept就行。
或者
由于CUDA安装包中NVIDIA驱动的版本并不保证是最新的,也不一定适合你的计算机的显卡,所以建议使用下面这种方式分开安装,如果NVIDIA驱动版本和CUDA版本不对应的话,会导致CUDA安装失败,或者进入不了桌面服务。可以去NVIDIA官网 下载对应你的显卡的驱动的最新版,至少要高于CUDA安装包中自带的NVIDIA版本。
通过下列命令
- cuda_6.5.14_linux_64.run –extract=extract_path
cuda_6.5.14_linux_64.run --extract=extract_path
将下载得到的 *.run 文件解压成三个文件, 分别为
CUDA安装包: cuda-linux64-rel-6.5.14-18749181.run
NVIDIA安装包: NVIDIA-Linux-x86_64-340.65.run
CUDA Samples安装包:cuda-samples-linux-6.5.14-18745345.run
分别运行各个文件,运行前,需要将文件权限修改为可执行权限
命令:
- chmod +x *.run
chmod +x *.run
2):安装CUDA
命令:
- sudo sh cuda-linux64-rel-6.5.14-18749181.run
sudo sh cuda-linux64-rel-6.5.14-18749181.run
一直aceept就行,建议使用默认路径。
安装NVIDIA(如果没有NVIDIA显卡,可跳过该步骤,仍可使用Caffe的CPU模式)
命令:(不建议使用)
- sudo sh NVIDIA-Linux-x86_64-340.65.run
sudo sh NVIDIA-Linux-x86_64-340.65.run
一直aceept就行,建议使用默认路径。
3):建议方法(仅限于使用CUDA6.5,如果你需要使用更新的CUDA版本,请去NVIDIA官网 下载对应你的显卡的驱动的最新版,至少要高于CUDA安装包中自带的NVIDIA版本,然后单独安装显卡驱动。链接:http://www.nvidia.cn/Download/index.aspx?lang=cn)
1:添加驱动源
- sudo add-apt-repository ppa:xorg-edgers/ppa
- sudo apt-get update
sudo add-apt-repository ppa:xorg-edgers/ppa sudo apt-get update
2:安装340版驱动 (CUDA 6.5.14目前最高仅支持340版驱动, 343, 346版驱动暂不支持)
- sudo apt-get install nvidia-340
sudo apt-get install nvidia-340
3:安装完成后, 继续安装下列包 (否则在运行sample时会报错)
- sudo apt-get install nvidia-340-uvm
sudo apt-get install nvidia-340-uvm
4:安装完成后,最好重启计算机,让NVIDIA显卡工作
(2.2.4.5)安装CUDNN(可选)
1):下载 cudnn-6.5-linux-x64-v2 点击下载,然后执行以下命令安装
- tar -zxvf cudnn-6.5-linux-x64-v2.tgz
- cd cudnn-6.5-linux-x64-v2
- sudo cp lib* /usr/local/cuda-6.5/lib64/
- sudo cp cudnn.h /usr/local/cuda-6.5/include/
tar -zxvf cudnn-6.5-linux-x64-v2.tgz cd cudnn-6.5-linux-x64-v2 sudo cp lib* /usr/local/cuda-6.5/lib64/ sudo cp cudnn.h /usr/local/cuda-6.5/include/
2):更新软连接
- cd /usr/local/cuda-6.5/lib64/
- sudo rm -rf libcudnn.so libcudnn.so.6.5
- sudo ln -s libcudnn.so.6.5.48 libcudnn.so.6.5
- sudo ln -s libcudnn.so.6.5 libcudnn.so
(2.2.4.6)修改环境变量
1):在 /etc/profile 文件中添加以下内容:
- export PATH=/usr/local/cuda-6.5/bin:$PATH
命令:
- sudo vim /etc/profile
2):使环境变量生效
命令:
- source /etc/profile
source /etc/profile
(2.2.4.7)添加lib库路径
1):在 /etc/ld.so.conf.d/ 文件夹下添加 cuda.conf 文件,内容如下:
- /usr/local/cuda-6.5/lib64
2):使库路径立即生效
- sudo ldconfig [-v,可选]
(2.2.4.8)安装CUDA Samples
命令:
- sudo sh cuda-samples-linux-6.5.14-18745345.run
sudo sh cuda-samples-linux-6.5.14-18745345.run
一直aceept就行,建议使用默认路径。
编译CUDA Samples
命令:
- cd /usr/local/cuda-6.5/samples
- sudo make
编译完成后,进入路径:/samples/bin/x86_64/linux/release
运行命令:
- ./deviceQuery
./deviceQuery
输出:
- ./deviceQuery Starting…
- CUDA Device Query (Runtime API) version (CUDART static linking)
- Detected 1 CUDA Capable device(s)
- Device 0: “Tesla K40c”
- CUDA Driver Version / Runtime Version 6.5 / 6.5
- CUDA Capability Major/Minor version number: 3.5
- Total amount of global memory: 11520 MBytes (12079136768 bytes)
- (15) Multiprocessors, (192) CUDA Cores/MP: 2880 CUDA Cores
- GPU Clock rate: 745 MHz (0.75 GHz)
- Memory Clock rate: 3004 Mhz
- Memory Bus Width: 384-bit
- L2 Cache Size: 1572864 bytes
- Maximum Texture Dimension Size (x,y,z) 1D=(65536), 2D=(65536, 65536), 3D=(4096, 4096, 4096)
- Maximum Layered 1D Texture Size, (num) layers 1D=(16384), 2048 layers
- Maximum Layered 2D Texture Size, (num) layers 2D=(16384, 16384), 2048 layers
- Total amount of constant memory: 65536 bytes
- Total amount of shared memory per block: 49152 bytes
- Total number of registers available per block: 65536
- Warp size: 32
- Maximum number of threads per multiprocessor: 2048
- Maximum number of threads per block: 1024
- Max dimension size of a thread block (x,y,z): (1024, 1024, 64)
- Max dimension size of a grid size (x,y,z): (2147483647, 65535, 65535)
- Maximum memory pitch: 2147483647 bytes
- Texture alignment: 512 bytes
- Concurrent copy and kernel execution: Yes with 2 copy engine(s)
- Run time limit on kernels: No
- Integrated GPU sharing Host Memory: No
- Support host page-locked memory mapping: Yes
- Alignment requirement for Surfaces: Yes
- Device has ECC support: Enabled
- Device supports Unified Addressing (UVA): Yes
- Device PCI Bus ID / PCI location ID: 1 / 0
- Compute Mode:
- < Default (multiple host threads can use ::cudaSetDevice() with device simultaneously) >
- deviceQuery, CUDA Driver = CUDART, CUDA Driver Version = 6.5, CUDA Runtime Version = 6.5, NumDevs = 1, Device0 = Tesla K40c
- Result = PASS
./deviceQuery Starting... CUDA Device Query (Runtime API) version (CUDART static linking) Detected 1 CUDA Capable device(s) Device 0: "Tesla K40c" CUDA Driver Version / Runtime Version 6.5 / 6.5 CUDA Capability Major/Minor version number: 3.5 Total amount of global memory: 11520 MBytes (12079136768 bytes) (15) Multiprocessors, (192) CUDA Cores/MP: 2880 CUDA Cores GPU Clock rate: 745 MHz (0.75 GHz) Memory Clock rate: 3004 Mhz Memory Bus Width: 384-bit L2 Cache Size: 1572864 bytes Maximum Texture Dimension Size (x,y,z) 1D=(65536), 2D=(65536, 65536), 3D=(4096, 4096, 4096) Maximum Layered 1D Texture Size, (num) layers 1D=(16384), 2048 layers Maximum Layered 2D Texture Size, (num) layers 2D=(16384, 16384), 2048 layers Total amount of constant memory: 65536 bytes Total amount of shared memory per block: 49152 bytes Total number of registers available per block: 65536 Warp size: 32 Maximum number of threads per multiprocessor: 2048 Maximum number of threads per block: 1024 Max dimension size of a thread block (x,y,z): (1024, 1024, 64) Max dimension size of a grid size (x,y,z): (2147483647, 65535, 65535) Maximum memory pitch: 2147483647 bytes Texture alignment: 512 bytes Concurrent copy and kernel execution: Yes with 2 copy engine(s) Run time limit on kernels: No Integrated GPU sharing Host Memory: No Support host page-locked memory mapping: Yes Alignment requirement for Surfaces: Yes Device has ECC support: Enabled Device supports Unified Addressing (UVA): Yes Device PCI Bus ID / PCI location ID: 1 / 0 Compute Mode: < Default (multiple host threads can use ::cudaSetDevice() with device simultaneously) > deviceQuery, CUDA Driver = CUDART, CUDA Driver Version = 6.5, CUDA Runtime Version = 6.5, NumDevs = 1, Device0 = Tesla K40c Result = PASS
如果输出上述信息,恭喜你,NVIDIA和CUDA安装成功,则可以继续进行下一步安装Caffe环境。
(2.2.4.9)验证NVIDIA 驱动和CUDA是否安装成功
查看安装NVIDIA驱动版本 命令:
cat /proc/driver/nvidia/version
输出
- NVRM version: NVIDIA UNIX x86_64 Kernel Module 340.96 Sun Nov 8 22:33:28 PST 2015
- GCC version: gcc version 4.7.3 (Ubuntu/Linaro 4.7.3-12ubuntu1)
从输出信息可以看出NVIDIA驱动版本为 340.96
安装完成后,就可以重新启动桌面服务了。
命令:
- sudo start lightdm
sudo start lightdm
更多详情见请继续阅读下一页的精彩内容: http://www.linuxidc.com/Linux/2016-12/138625p2.htm
第三部分:Caffe安装和测试
该部分主要安装Caffe相关工具
(一)安装MATLAB
假设matlab安装路径为:/usr/local/MATLAB/R2014b
matlab破解文件路径为/home/
1)挂载iso文件
把matlab的ISO文件挂载上去,需要注意的是:挂载上去之前,需要将iso文件中的Java/jar/install.jar文件替换为破解文件夹中的install.jar,可以使用UltraIso工具,替换保存后再使用文件挂载命令。为防止出现权限不够的问题,建议使用root用户。
文件挂载命令格式如下:
mount -o loop,rw /home/R2014b_glnxa64.iso /mnt
/mnt是你要挂载的文件夹目录,建议你自己新建一个文件夹。
2)安装matlab
进入解压后的matlab文件夹,运行 sudo ./install
选择”install manually without using the internet”项进行安装
输入”file installation key”:12345-67890-12345-67890(随便都行)
激活:选择对应的”license.lic”文件进行激活(在Crack文件夹下面)
3)破解matlab
rm -rf /usr/local/MATLAB/R2014b/bin/glnxa64/libmwservices.so
把crack文件下的so文件拷贝过来:
cp /home/libmwservices.so /usr/local/MATLAB/R2014b/bin/glnxa64/
4)安装成功,运行
/usr/local/MATLAB/R2014b/bin/matlab
5)配置环境变量,使得直接输入matlab即可启动软件
vi /etc/profile
在文件末尾添加
export PATH=/usr/local/MATLAB/R2014b/bin:$PATH
保存并退出后使设置生效
source /etc/profile
(二)安装Python
sudo apt-get install python-dev python-pip
安装Python依赖包
sudo apt-get install python-numpy python-scipy python-matplotlib ipython ipython-notebook python-pandas python-sympy python-nose
python-sklearn python-skimage python-h5py python-protobuf python-leveldb python-networkx
(三)安装Intel MKL或者ATLAS
如果没有申请到Intel MKL,可以使用以下命令安装免费的ATLAS
- sudo apt-get install libatlas-base-dev
sudo apt-get install libatlas-base-dev
如果申请到了MKL,解压下载到的文件,运行install_GUI.sh,然后按照图形界面步骤安装即可。
安装完成后,需要执行下列两个步骤:
1):在 /etc/ld.so.conf.d/ 文件夹下添加 intel_mkl.conf文件,内容如下:
- /opt/intel/lib
- /opt/intel/mkl/lib/intel64
2):使库路径立即生效
- sudo ldconfig [-v,可选]
sudo ldconfig [-v,可选]
(四)安装OpenCV(该选项【可选】)
安装2.4.10
1)下载安装脚本
2)进入目录 Install-OpenCV/Ubuntu/2.4
3)执行脚本
chmod +x *.sh
sh ./opencv2_4_10.sh
(五)编译Caffe
1)下载Caffe源码包 Caffe源码包
2)进入caffe-master文件夹目录,复制一份 Makefile.config.examples
cp Makefile.config.example Makefile.config
3)修改Makefile.config文件中相关路径
- ## Refer to http://caffe.berkeleyvision.org/installation.html
- # Contributions simplifying and improving our build system are welcome!
- # cuDNN acceleration switch (uncomment to build with cuDNN).
- # USE_CUDNN := 1
- # CPU-only switch (uncomment to build without GPU support).
- # CPU_ONLY := 1
- # uncomment to disable IO dependencies and corresponding data layers
- # USE_OPENCV := 0
- # USE_LEVELDB := 0
- # USE_LMDB := 0
- # uncomment to allow MDB_NOLOCK when reading LMDB files (only if necessary)
- # You should not set this flag if you will be reading LMDBs with any
- # possibility of simultaneous read and write
- # ALLOW_LMDB_NOLOCK := 1
- # Uncomment if you’re using OpenCV 3
- # OPENCV_VERSION := 3
- # To customize your choice of compiler, uncomment and set the following.
- # N.B. the default for Linux is g++ and the default for OSX is clang++
- # CUSTOM_CXX := g++
- # CUDA directory contains bin/ and lib/ directories that we need.
- #CUDA的安装目录
- CUDA_DIR := /usr/local/cuda
- # On Ubuntu 14.04, if cuda tools are installed via
- # “sudo apt-get install nvidia-cuda-toolkit” then use this instead:
- # CUDA_DIR := /usr
- # CUDA architecture setting: going with all of them.
- # For CUDA < 6.0, comment the *_50 lines for compatibility.
- CUDA_ARCH := -gencode arch=compute_20,code=sm_20 \
- -gencode arch=compute_20,code=sm_21 \
- -gencode arch=compute_30,code=sm_30 \
- -gencode arch=compute_35,code=sm_35 \
- -gencode arch=compute_50,code=sm_50 \
- -gencode arch=compute_50,code=compute_50
- # BLAS choice:
- # atlas for ATLAS (default)
- # mkl for MKL
- # open for OpenBlas
- BLAS := atlas
- # Custom (MKL/ATLAS/OpenBLAS) include and lib directories.
- # Leave commented to accept the defaults for your choice of BLAS
- # (which should work)!
- # BLAS_INCLUDE := /path/to/your/blas
- # BLAS_LIB := /path/to/your/blas
- # Homebrew puts openblas in a directory that is not on the standard search path
- # BLAS_INCLUDE := $(shell brew –prefix openblas)/include
- # BLAS_LIB := $(shell brew –prefix openblas)/lib
- # This is required only if you will compile the matlab interface.
- # MATLAB directory should contain the mex binary in /bin.
- #MATLAB的安装目录
#MATLAB的安装目录
# MATLAB_DIR := /usr/local
# MATLAB_DIR := /Applications/MATLAB_R2012b.app
# NOTE: this is required only if you will compile the python interface.
# We need to be able to find Python.h and numpy/arrayobject.h.
- #PYTHON的安装目录
- PYTHON_INCLUDE := /usr/include/python2.7 \
- /usr/lib/python2.7/dist-packages/numpy/core/include
- # Anaconda Python distribution is quite popular. Include path:
- # Verify anaconda location, sometimes it’s in root.
- # ANACONDA_HOME := $(HOME)/anaconda
- # PYTHON_INCLUDE := $(ANACONDA_HOME)/include \
- # $(ANACONDA_HOME)/include/python2.7 \
- # $(ANACONDA_HOME)/lib/python2.7/site-packages/numpy/core/include \
- # Uncomment to use Python 3 (default is Python 2)
- # PYTHON_LIBRARIES := boost_python3 python3.5m
- # PYTHON_INCLUDE := /usr/include/python3.5m \
- # /usr/lib/python3.5/dist-packages/numpy/core/include
- # We need to be able to find libpythonX.X.so or .dylib.
- PYTHON_LIB := /usr/lib
- # PYTHON_LIB := $(ANACONDA_HOME)/lib
- # Homebrew installs numpy in a non standard path (keg only)
- # PYTHON_INCLUDE += $(dir $(shell python -c ‘import numpy.core; print(numpy.core.__file__)’))/include
- # PYTHON_LIB += $(shell brew –prefix numpy)/lib
- # Uncomment to support layers written in Python (will link against Python libs)
- # WITH_PYTHON_LAYER := 1
- # Whatever else you find you need goes here.
- INCLUDE_DIRS := $(PYTHON_INCLUDE) /usr/local/include
- LIBRARY_DIRS := $(PYTHON_LIB) /usr/local/lib /usr/lib
- # If Homebrew is installed at a non standard location (for example your home directory) and you use it for general dependencies
- # INCLUDE_DIRS += $(shell brew –prefix)/include
- # LIBRARY_DIRS += $(shell brew –prefix)/lib
- # Uncomment to use `pkg-config` to specify OpenCV library paths.
- # (Usually not necessary — OpenCV libraries are normally installed in one of the above $LIBRARY_DIRS.)
- # USE_PKG_CONFIG := 1
- BUILD_DIR := build
- DISTRIBUTE_DIR := distribute
- # Uncomment for debugging. Does not work on OSX due to https://github.com/BVLC/caffe/issues/171
- # DEBUG := 1
- # The ID of the GPU that ‘make runtest’ will use to run unit tests.
- TEST_GPUID := 0
- # enable pretty build (comment to see full commands)
- Q ?= @
4)编译Caffe
make all -j4
make test
make runtest
5)编译Matlab接口
make matcaffe
6)编译Python接口
make pycaffe
至此,就可以学着运行Caffe中的Demo了。
如果你的机器没有可用的NVIDIA显卡,仍然可以使用Caffe,可以配置Caffe的CPU(无GPU)模式,在整个安装过程中,请跳过【第二部分:NVIDIA 驱动和CUDA 安装】,其他部分保持不变进行操作。
按照该教程在安装的过程中,有什么问题,欢迎在评论区留言,共同进步。
期待着NVIDIA将Caffe,Digits等一系列深度学习工具包集成到CUDA中吧,直接一键安装,相信美好的事情即将发生。
本文永久更新链接地址:http://www.linuxidc.com/Linux/2016-12/138625.htm